Lagrange Multipliers
Start with a
Constraint: $f(x, y)=0$
For example, f could
 bee:

$$
\left(\begin{array}{c}
\text { energy cost of flying } \\
\text { to and from }(x, y) \\
\text { to gather pollen }
\end{array}\right)-\left(\right)
$$

the level set

$$
f(x, y)=0 \quad \text { (the }
$$

farthest points a bee could fly to)

We also have a benefit function $B(x, y)$ that records how much pollen you go by when flying to (x, y)

Example level sets for $B(x, y)$
We want to maximize $B(x, y)$ subject to $f(x, y)=0$.

Pick a valve k and take $B(x, y)=k$. Can k be the maximum possible benefit on $f(x, y)=0$?

ZOOm in:

7

$$
\begin{aligned}
& B(x, y)>k \text { on } \\
& B(x, y)<k \text { on }
\end{aligned}
$$

So the answer is no, because the $f(x, y)=0$ curve crosses over the $B(x, y)=k$ curve at a point of intersection.

More abstractly, $\nabla B(x, y)$ always points perpendicular to level curves, and the same for $\nabla f(x, y)$.

Gradients at intersection point

The curves are well approximated by their tangent t lines at X
These cross over each ot her when the gradients at χ are not aligned.

So check all points where ∇f and ∇B are aligned and $f(x, y)=0!$

